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By using the transfer-matrix method, we study the Anderson localization behavior in one-dimensional
random systems composed of two different single-negative (SNG) metamaterials, in which either the permit-
tivity or the permeability is negative. Both nondispersive and dispersive models have been adopted in this
study. We find that when both the averaged permittivity and the averaged permeability are negative, or
effectively a negative refractive index, the localization behavior in the long-wavelength limit is found to be
similar to that of the traditional random systems made of double-positive (DP) materials, i.e., positive permit-
tivity and positive permeability, and can be described by the standard localization theory developed for DP
materials, although the wave transport mechanism of such systems is very different from that of DP materials.
In the case of a dispersive model, a different localization behavior has been found inside a gap created around
a particular frequency at which the sum of the impedances of the two SNG metamaterials vanishes. For
example, the frequency dependence of the localization length can exhibit a sharp peak inside the gap, and the
localization length is found to be smaller than the decay length of the corresponding periodic structure. The
latter is opposite to the well-known localization behavior found in DP materials, where the localization length
is, in general, larger than the decay length. Various wave propagation properties associated with this gap have
been obtained. Some analytical results based on transfer matrices and long-wavelength limit description have

been used to explain the simulation results.
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I. INTRODUCTION

Recently, a new type of artificial composite, so-called
metamaterials, has attracted a great deal of attention. The
most interesting characteristic of these metamaterials is their
negative permittivity & and/or negative permeability w.! In
practice, the negative £ and negative u are realized by using
subwavelength resonators such as split rings and small me-
tallic wires,” respectively. One can construct metamaterials
with both negative & and u, so-called double-negative
(DNG) metamaterials or left-handed materials. At the same
time, one can also construct materials with only one of & and
o negative, i.e., £<0 and u>0, or e>0 and <0, so-
called single-negative (SNG) metamaterials.

It has been reported that structures containing these
metamaterials show some unusual electromagnetic proper-
ties. For example, a slab of DNG materials can be used as a
superlens;’ a periodical arrangement of layers made of ordi-
nary and DNG metamaterials can display zero-iz band gap,*
while a periodical arrangement of SNG metamaterials shows
a SNG stop band;>* one-dimensional (1D) periodical struc-
tures containing layers of DNG materials may exhibit a
three-dimensional band gap,” and so on.

Most of the previous works on metamaterials focused on
certain unusual properties of wave propagation in a periodi-
cal structure. A natural question to ask is, how would these
properties be altered if randomness is introduced into the
structures? This problem has been extensively studied for
traditional random systems made of double-positive (DP)
materials with both ¢ >0 and ©>0. For DP materials, it is
now well accepted that all states are localized in one dimen-
sion when any amount of randomness is introduced into the
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system.®? Since periodical systems containing metamaterials
have been demonstrated to possess many unusual properties,
nontrivial localization properties can also be expected when
randomness is introduced into such systems. Recently, wave
propagation in 1D random systems made of alternating lay-
ers of DP and DNG metamaterials has been studied and
some novel localization length behaviors have been
found.'%-!

In this work, by using the transfer-matrix method, we
study wave localization behavior in one-dimensional random
systems made of two kinds of SNG metamaterials. Both non-
dispersive and dispersive models are adopted in this study.
Our focus is in the long-wavelength limit. Our results show
that the localization behavior in a propagating band, which
effectively possesses a negative refractive index with both
the averaged permittivity and averaged permeability being
negative, is in general similar to that found in the random
systems made of DP materials and can be described by the
standard localization theory developed for DP materials.
However, the wave transport mechanism of such systems is
very different from that of DP materials. In the case of a
dispersive model, the random SNG systems do display some
unique features which are in sharp contrast to the case of
traditional random DP systems. This occurs when the sum of
the impedances of the two different SNG metamaterials van-
ishes. Around this frequency, a gap can be created. Within
this gap, the localization length is found to be smaller than
the decay length of the corresponding periodical system.
This is opposite to the well-known localization behavior
found in DP materials, where the localization length is, in
general, larger than the decay length. The frequency depen-
dence of the localization length can also exhibit a sharp peak
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inside the gap. We explain these anomalous phenomena as
well as other wave propagation properties associated with
this gap by using transfer matrices together with a long-
wavelength limit description.

II. MODEL DESCRIPTION

We consider the propagation of electromagnetic (EM)
waves through a random one-dimensional sample consisting
of equal numbers of two kinds of SNG layers: A with g4
<0 and py4 >0, and B with e5>0 and up<0 embedded in
air. The layer thicknesses are fixed as d, and dp, respectively.
The random structure is constructed by stacking these two
kinds of layers in random order. Since we do not allow layers
to overlap, the sample thickness remains the same for all
different random configurations, i.e., L=N(d4+dp), where N
is the number of A and B layers. We assume that the EM
wave is incident normally on one surface of the sample. We
calculate the transmission coefficient on the other surface of
the sample. Since only one of € and u in such SNG metama-
terials is negative, the refractive index in each layer is purely
imaginary and, therefore, the field inside these SNG layers is
evanescent. When the system is periodic with a pair of A and
B layers as the unit cell, band structures with both propagat-
ing and forbidden bands can appear in such system. Its dis-
persion relation can be obtained from the Bloch-Floquet

theorem,'? i.e.,

1
cos KA = cos(kdy)cos(kpdp) - _<q_B
2\q4
+ q—A>sin(kAdA)sin(deB), (1)
9B

where K is the Bloch wave vector and A=d,+dp is the pe-
riod. g;=Vu;/ Ve; and k;=k\eNw; (i=A,B), and k is the wave
vector in vacuum. It should be noted that both the wave
vector k; and the impedance ¢; are purely imaginary due to
the negativity of one of &; and w; Therefore, Eq. (1)
becomes>*®

1
cos KA = cosh(|ky|d,)cosh(|kg|dp) — —(ﬂ
2\|g4]
|94l \ . .
+ m sinh(|k|d,)sinh(|kg|dg). (2)
B

Since we take the absolute values of k; and ¢; in Eq. (2), the
hyperbolic functions of cosh and sinh are used. The condi-
tion that a frequency is in a pass band or a gap depends on
whether the value on the right-hand side of Eq. (2) is be-
tween —1 and 1 or not. When the value falls outside this
range, K becomes complex, which implies that the frequency
is inside a gap.

The formation of band structures in such system is differ-
ent from that in a system made of DP materials, which is
known as the Bragg scattering. Since the wave vector in each
of the SNG layer is purely imaginary, it is important to un-
derstand the wave transport mechanism inside a pass band.
We first consider the transmission of EM waves through a
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FIG. 1. A typical form of a wave function at band edge in our
model.

single unit cell consisting of two adjacent layers of A and B.
Since k, is imaginary, the electric field exponentially decays
near the input surface of layer A. The presence of layer B
with an impedance different from that of A adds an exponen-
tial growth term to the field inside layer A, leading to a
cusplike wave function near the interface of A and B layers,
which peaks at the interface and exponentially decays into
the layers, mimicking a surface state. In a periodic structure,
this cusplike wave function repeats itself and, therefore, fa-
cilitates the wave transport through the sample. A typical
form of such wave function at band edge is shown in Fig. 1.

To study the wave localization behavior in random sys-
tems, we calculate the transmission coefficient as a function
of sample thickness, T(L). For localized waves, T(L) expo-
nentially decays with L, apart from some statistical fluctua-
tions. The localization length & is defined by'?

—InT(L)

&= lim (3)

L—o
In the limit of infinite L, the above equation gives a well-
defined value of ¢ through self-averaging. When L is finite,
the localization length can be obtained from the geometrical
mean of 7 over many different configurations, i.e., & I=
—(InT(L))/ L. Typically, in our calculations, the layer thick-
ness is taken to be five to six times of the localization length
and the number of configurations is chosen to be 500, which
is found to be sufficient for obtaining a reliable result.

The transmission coefficient of a layered system can be
calculated by using the standard transfer-matrix
method.®!*!3 The field in the ith layer can be described by a
vector u; composed of two components: electric (E) and
magnetic (H) fields, respectively. The transfer matrix relates
the field in the (i+1)th layer to the ith layer through u;,,
=M, u;, where M; has the form

1/|g;|sinhlk{d;
cosh|k;|d;

(4)

i

cosh|k;|d;
~ |gilsinh|k;|d;

T is obtained by evaluating®

115332-2



WAVE LOCALIZATION IN ONE-DIMENSIONAL RANDOM...

T
1 !
0 \ Gap ]
g -2 g=-9u,=1; 3 i
3] gg=1,1y="-9; 3 A-
T T
5 1
© 104 ; ]
<@ |
5o :
T o Random '
ST 13 e Periodical 0od e E
Je —— Theoretical ! % B
© :
o T T T T T
3 0.04 0.06 0.08 0.1 0.2 0.4

Angular frequency(wd,/c)

FIG. 2. A nondispersive model. Band structure and localization
length as a function of dimensionless angular frequency for the first
type of SNG systems described in the text.
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where m; ;(i,j=1,2) are the matrix elements of M(N)zﬂfil
M;, and N is the total number of layers.

II1. SIMULATION RESULTS OF A NONDISPERSIVE
MODEL

For simplicity, we first study a nondispersive model, in
which 4 5 and u, g are independent of frequency. The band
structures of a periodical structure, i.e., (AB)", can be ob-
tained by using Eq. (2). For the nondispersive model, we
find, in general, two types of band structures. The first type is
shown in Fig. 2(a), where we have chosen £,=-9, u,=1,
eg=1, pup=-9, and ds=dp. In Fig. 2(a), we have plotted
cos(KA) versus the logarithm of the dimensionless angular
frequency @= wd,/c, where c is the wave speed in vacuum.
The second type is shown in Fig. 3(a), where we have chosen

8A=-3;HA=1; Gap
eg=5uy="9;

cos(KA)
.7
o
QO
2

< ) i

© !

& 10y P E
c ’\< : 1 3
S © iy

=% o Random Co [

S 13 * Periodical e L
g5 —— Theoretical ‘ \ ]
sE biY B
§ 0.1 . . !

3 0.01 0.05 0.1 05 1

Angular frequency (od,/c)

FIG. 3. A nondispersive model. Band structure and localization
length as a function of dimensionless angular frequency for the
second type of SNG systems described in the text.
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g4=-3, uu=1, =5, and up=-9. These two types can be
characterized by their wave propagation properties at low
frequencies, i.e., propagating in Fig. 2(a), while nonpropa-
gating in Fig. 3(a). The propagation properties at long wave-
lengths can be determined by the signs of two effective pa-

. e . dy+epd, .
rameters: effective permittivity, &,y= 222 and effective
St ud eff~  dy+dg
permeability, /Leff=%. Here, we have applied the qua-

sistatic effective medium theory for scalar waves to both
electric and magnetic fields as they both are scalar waves in
a 1D system with normal incidence.'® For the first type as
shown in Fig. 2(a), both &,=—4 and u,;=-4 are negative,
leading to a propagating band with a negative refractive in-
dex at low frequencies. For the second type, either &,/ or
Mefr 18 negative, i.e., their signs are opposite. In this case, the
band structures show a gap at low frequencies as shown in
Fig. 3(a), where &,;=1 and u,;=—4. Such an effective me-
dium description is valid only when the wavelength in the
effective_medium is much larger than the period, i.e.,
27l e g > da+dp. At higher frequencies, for the first
type, it is seen from Fig. 2(a) that a transition to a gap occurs
at a particular frequency at which cos(KA)=-1, whereas for
the second type, the band structures show two gaps, sand-
wiching a pass band as shown in Fig. 3(a).

When the above systems are random, we are interested in
studying their localization behaviors. For this purpose, we
consider a finite system with any given number of periods.
To introduce the randomness, we rearrange A and B layers in
a random manner as mentioned in Sec. II. By using the
transfer-matrix method, we calculate the transmission coeffi-
cient T for each random configuration. For any chosen fre-
quency and sample thickness L, T is calculated for 500 dif-
ferent configurations to study the localization behavior. A
localized state is identified when the configurational average
of —In T is proportional to L, and the localization length is
obtained through £=-L/(InT). For both systems shown in
Figs. 2(a) and 3(a), we find that all states are localized. The
corresponding results of the localization length are shown in
Figs. 2(b) and 3(b) by open circles. Although the localization
of waves for 1D systems is well known, there are some in-
teresting differences between the random SNG and DP sys-
tems.

In Figs. 2(b) and 3(b), we also plot the decay length of the
corresponding periodical systems by solid circles for fre-
quencies inside the gap. Here, we define the decay length as
&,=—-L/InT. It is interesting to see that within the gap, the
localization length is, in general, smaller than the decay
length, except in a region near wd,/c=0.05 in Fig. 3(b),
where the localization length is slightly larger than the decay
length. This is different from the situation found in tradi-
tional random DP systems. In Fig. 4, we show the localiza-
tion length and the decay length of a typical DP system for
comparison. It is clearly seen that the localization length in-
side a gap is, in general, much larger than the decay length,
except near the band edge. For DP systems, this result is
normally explained as follows. The randomness introduces
new states inside a gap and, therefore, facilitates the trans-
port of waves, leading to a larger transmission. Or alterna-
tively, the formation of a gap in a periodic DP system is a
result of complete destructive interferences among various
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FIG. 4. Band structure and localization length as a function of
dimensionless angular frequency for double-positive systems.

partial waves in the forward direction. The introduction of
randomness will reduce such interferences and make them
incomplete, leading to a larger transmission. Thus, the local-
ization length is generally larger than the decay length of the
corresponding periodical structures. However, in SNG mate-
rials, the wave is intrinsically evanescent in each layer. The
transport of waves is facilitated by the presence of a cusplike
wave function near the interface of A and B layers due to the
coupling of evanescent waves in each layer as discussed in
Sec. II. So the number of interfaces in the systems plays an
important role for the wave propagation in SNG systems. In
the periodical system (AB)", A and B layers are alternatively
and periodically stacked. However, in our random model, A
and B layers are randomly stacked. Thus, the total number of
the interfaces between A and B layers is always less than that
in a periodic sample. This can make the localization length in
a random sample smaller than the decay length of the corre-
sponding periodical sample.

Figures 2(b) and 3(b) also exhibit different localization
behaviors at low frequencies, i.e., <@ 2 in Fig. 2(b) and ¢
@ ! in Fig. 3(b). The difference can also be understood
from the different long-wavelength limit properties of two
random systems. In the long-wavelength limit, the periodic
systems can be analyzed by using effective medium theory
as discussed above. For the first type of system shown in Fig.
2, the underlying periodic system can be considered as a
homogeneous medium with &,,=-4 and w,;=-4. This be-
longs to the so-called left-handed materials, where waves can
propagate with a negative refractive index. Since this is a
propagating band for the periodic system, the localization
length behavior in the random system can be theoretically
analyzed by using the following formula derived for 1D ran-
dom DP systems:!”

1| & —~ 2
1_ = A A 2 B A
& —4|:dA+dB(|8A|+|:U’A|) +dA+dB(|SB|

+ |MB|)2:|8mme2' (6)

The detailed derivation and the definition of the parameters
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£4(8)» Mas)> Em» and u,, are given in the Appendix. It should
be pointed out that the expressions of the averaged param-
. __ gxdytepdp _ Mada+ppdp
eters ¢, and uw,, i.e., g,= drdy and My =""7 g » are
exactly the same as those of &4 and . defined before for
an ordered metamaterial. Here, we purposely choose a dif-
ferent subscript because the concepts of homogenization and,
therefore, effective medium are not appropriate for 1D ran-
dom media due to wave localization. Equation (6) gives
£/d,=0.04&2, which is plotted by a solid line in Fig. 2(b). It
is clearly seen that the theoretical result agrees well with the
stimulation result. It should be pointed out again that the
above theory works only when the long-wavelength limit
description is valid. For the system considered in Fig. 2, it
requires that @= wd,/c << /4. This condition is satisfied for
the range of @ shown in Fig. 2. For the second type shown in
Fig. 3, it is found that the localization length coincides with
the decay length in the long-wavelength limit. In this limit,
the waves are effectively evanescent with the decay length
given by ¢/(2\|e spttoplw) or £,/dy=0.25"". This result is
plotted by a solid curve in Fig. 3(b), which again shows
excellent agreement with the simulation result when @
<0.2.

IV. SIMULATION RESULTS OF A DISPERSIVE MODEL

Generally, the metamaterials are dispersive, i.e., € and u
are frequency dependent. One unique feature of a dispersive
model is the existence of a gap near a particular frequency at
which the sum of the two impedances of the A and B layers
vanishes. This special gap is called SNG gap in Ref. 6. Here,
we are interested in the localization behavior inside a SNG
gap. For convenience, we use the following model®'® disper-
sion to describe the isotropic single-negative materials:

2

wC
ga=a, py=1-—, (7a)
o
o’
ep=1-—", up=>b, (7b)
w

where w, and w, are, respectively, the electronic and mag-
netic resonance frequencies, and a and b are positive con-
stants. In this model, ¢, and wup are fixed to be positive,
while u, and e are frequency dependent. In the following
calculations, we choose a=3, b=1, w§=0.16(c/d0)2, and
w2=0.08(c/dy)?, where d, denotes the characteristic length
of the metamaterials. It should be noted that all metameteri-
als possess absorption. This will introduce an imaginary part
into the terms w, and ez in Eq. (7). This, in turn, will give
rise to a different decay mechanism to the electromagnetic
field. Since the interplay between absorption and localization
can mask the pure localization behavior we want to investi-
gate, in this work, we do not include absorption in Eq. (7). In
Fig. 5(a), we plot u, and &z as functions of dimensionless
angular frequency @= wd,/c. The SNG metamaterials refer
to the region of ®><0.08 or ®<0.2828, in which both u,
and e are negative as can be directly seen from Eq. (7).
By using Eq. (2), we calculate the band structures of the
1D periodical systems made of these kinds of materials. The
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FIG. 5. A dispersive model for SNG systems. (A) Dispersion
relations of & and u, (B) band structure, (C) transmission coefficient
of a periodic system, and (D) localization length of random
systems.

result of the case dz=1.2d,, and d4=d,, is shown in Fig. 5(b).
The corresponding transmission spectrum is shown in Fig.
5(c). It can be seen that within the SNG region, i.e., @
<0.2828, there exist both pass bands and stop bands. The
interesting SNG gap found in Ref. 6 is located around @
=0.2, at which g,+¢5=0."° The existence of this SNG gap
can be seen from Eq. (2). At @, the equation can be reduced
to cosh(|k,|d,—|kg|dp), which is greater or equal to 1. Only
when |kA|dA=|kB|dB’ we have COSh(|kA|dA—|kB|dB)= 1, which
corresponds to a tunneling or transparency.>?® However, in
the most general situation, |k,|d, # |ks|ds and cosh(|k,|d,
—|kpldg)>1, this leads to a gap around @&,. The formation
mechanism of the SNG gap is different from that of the
Bragg gap in DP systems. It is also unique to the dispersive
model considered here and is different from the gaps found
in Figs. 2(a) and 3(a) for the nondispersive models. This
unique formation mechanism of the SNG gap is also the
source of various anomalous localization properties, which
will be discussed later, when randomness is introduced into
the system.

When randomness is introduced into the system, we cal-
culate the localization length and plot the result in Fig. 5(d).
It is surprising to see that the localization length has a sharp
peak at @,=0.2 inside the SNG gap. Such a sharp peak is
absent in random DP systems such as the one shown in Fig.
4. In order to find the origin of this anomalous peak, we also
calculate the decay length of the corresponding periodical
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FIG. 6. (A) The open circles and solid curves are the simulation
and theoretical results, respectively, of the localization length of
random SNG systems. The solid circles denote the decay length of
the corresponding periodical system. The vertical lines show the
position of the SNG gap. (B) Same as (A), except that the layer
thickness of each layer is reduced by a factor of 10.

systems. The result is plotted by solid circles in Fig. 6, where
the open circles denote the localization length and the two
dashed lines mark the gap region. The first thing we noticed
is that the localization length ¢ is always smaller than the
decay length &, except at @), where two lengths become
equal. The reason that £é=¢, at @, can be understood from the
transfer matrix M; given in Eq. (3), which can be rewritten as

y (1 1><e-|kildf 0 )(1 1)-‘ @)
g -a 0 eli/\g; —q;)

By using the above expression, it is easy to show that, when
gua+q=0, M, and My become commutable and have the
following form:

( 1 1 )( 0 o~ kalds-lkgldp) )
MMp =
A™B ga —qa /) \ekalda—lksldp) 0

X , )
4B — 4B

where k, and kp are wave vectors at @, for the A and B
layers, respectively. Thus, the transmission coefficient of any
random configuration is the same as that of a periodic struc-
ture, leading to £=¢,. Furthermore, it can also be shown that
a product of 4N matrices of the form (M M zM gM ,)" has the
following simple expression:

(MAMBMBMA)N=( : : )

qa —d4a
o~ 2N(kylda~kpldp) 0
X 0 o2V Ukldy=Ikgldp)
o1\
y , (10)
da —4a

from which we can obtain the decay length &,=0.5(d,
+dp)/||ks|lds—|kg|dg|. For the dispersive model discussed
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FIG. 7. The localization length and the decay length in SNG
systems with three different ratios of d,/dp.

above, the above relation gives &;/dy=1.4433(d,+dp)/|d,
—dpg|. Thus, &, diverges when d,=dy, at which the gap is
closed. Thus, the sharp peak appears in the SNG gap is a
unique property associated with the special frequency @, at
which g,+¢p=0. To numerically verify this, we have done
similar calculations by choosing dp/d,=1.4, 1.6, and 1.8 and
ds=d,. These results are plotted in Fig. 7. It is clearly seen
that the height of the peak at @, continuously decreases and
at the same time, the width of the gap increases. The peak
disappears when dp/d,=1.6. At the same time, the differ-
ence between & and £, decreases significantly in a region
centered at @. In Fig. 8, we plot the localization length at @,
as a function of dp for two different choices of d,: one with

T T T T T T T T
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= d =0.6do
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FIG. 8. The simulated localization length at wdy/c=0.2 as a
function of dy for dy=d, (open squares) and d,=0.6d, (solid
squares). The solid curves are the analytical results obtained form
transfer matrices.
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FIG. 9. The position of the SNG gap as a function of dg/d, for
ds=d,. The solid curves and open circles represent, respectively,
the results of Eq. (1) and the effective medium theory.

d,=d, and the other with d,=0.6d,. It is clearly seen that
both curves follow exactly the relation &;/d,=1.4433(d,
+dp)/|dy—dpg|, which is shown by the solid curves.

In order to quantitatively understand how the gap size
changes with the ratio dg/dy, we plot in Fig. 9 the frequen-
cies of the two band edges as functions of dp/d, from 0 to 2
by two solid curves. These two curves are obtained from Eq.
(2) when cos KA=1. For frequencies inside the gap, we find
cos KA > 1. To understand these two curves, one can use the
effective medium approach. The open circles in Fig. 9 are the

. . dy+egd,
results obtained from the relations geﬁ.:%#zis:o and
dotpnd .
quf=%=0. The excellent agreement between the

open circles and the solid curves indicate that the region
between these two band edges effectively represents an eva-
nescent region of the effective medium, i.e., &, <<0. In
fact, by using the condition cos KA=1 together with the
long-wavelength conditions that |k4|d, <1 and |kg|ldz <1, we
are able to show that Eq. (2) reduces to &,4=0 or u,s=0.
Thus, the position of the SNG gap can be well described by
the effective medium description.

Finally, we discuss the localization behavior outside the
SNG gap. We calculate the localization length by using Eq.
(6) and plot it by two solid curves in Fig. 6. It should be
mentioned that Eq. (6) is derived for random DP materials.
For SNG materials, this equation can only be applied to the
propagating regions. It is interesting to see that Eq. (6) can
well reproduce the simulation result if frequency is not close
to the two band edges of the SNG gap. As the band edge is
approached, the theory predicts a decreasing localization
length which vanishes at the band edge, whereas the simula-
tion result shows an increasing localization length. The dis-
crepancy between the two can be understood as follows.
Near the band edges, either ¢,, or u,, is very small. Thus, the
normalized fluctuations defined by Eq. (A1) of the Appendix
become very large, which implies a strongly disordered sys-
tem. In this case, the long-wavelength theory derived in the
Appendix becomes inadequate. Better agreement can be
achieved by reducing the layer thicknesses d, and dg. This is
demonstrated in Fig. 6(b), where we have chosen d,=0.1d,,
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and dp=0.12d,. The open circles in the figure represent the
simulation result, and the solid curve is the result of Eq. (6).
Compared to the case of Fig. 6, since both d, and dp are
smaller by a factor of 10, the localization length in the propa-
gating band is increased by the same factor as can be seen
from Eq. (6). However, inside the SNG gap, the localization
length (or decay length) at @, remains unchanged as it de-
pends only on the ratio d,/dp as can be seen from the rela-
tion &,/dy=1.4433(d,+dp)/|d,—dp|. Thus, the localization
length changes from an increasing function to a decreasing
function as the band edge is approached, leading to a better
agreement with the prediction of Eq. (6).

V. CONCLUSION

We have investigated the Anderson localization behavior
in one-dimensional random systems made of SNG materials.
Both the nondispersive and dispersive cases are studied. We
find that the localization behavior in the propagating regions
is similar to that of the traditional random systems made of
DP materials. For the dispersive model, our interest is fo-
cused on a special gap created around a particular frequency
at which the sum of the two impedances of the SNG mate-
rials vanishes. Some other localization behaviors have been
found inside this gap. Analytical methods based on transfer
matrices and long-wavelength limit description have been
used to explain various transport properties associated with
this gap.
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APPENDIX

The derivation of Eq. (6) is based on a standard analytical
result developed for classical waves in the long-wavelength
limit.!” In order to use the result for the two-component ran-
dom systems we study here, we rewrite the permittivity &
and permeability p of each component in terms of their
mean values, i.e.,

e=g,(1+&,) (Ala)
and

m= (1 + ), (Alb)
where s,n=% and ,um=%. It should be noted

that although the expressions of g, and w,, are exactly the
same as those of Eoff and Mgy defined in Sec. III, we choose
a different subscript here to avoid possible confusion as the
concept of homogenization and effective medium no longer
holds in 1D random media due to wave localization. € and &
denote the normalized fluctuation in & and w as follows:

PHYSICAL REVIEW B 77, 115332 (2008)

&= (A2a)
8m
and
a=Et (A2b)
Mon

where & (u) can be g4 or g5 (uy or ug) with probability
Py=d,/(dy+dg) and Pg=dg/(d,+dp), respectively.

According to the work of Sheng ef al.,'” the localization
length & has the following simple expression in the long-
wavelength limit:

&= %(agg + = 20, €l (A3)
where
Xy = f: (8(0)8(x))dx, (Ada)
W= f: ((0) fu(x))dx, (A4b)
and
Aoy = f:<é(om(x>>dx. (Adc)

It should be pointed out that the above expression for the
localization length is valid as long as e,,u,,>0. Thus, it is
applicable to our random systems when both g,,<0 and
M, <0. The above a’s are integrals of the autocorrelation
and correlation functions for € and f. Since there are no
correlations between two layers, (£(0)&(x))# 0 only when
£(0) and &(x) lie in the same layer, yielding

dy X dp X
aw:PAf 1-— (éA)de+PBf 1 - —)(&p)%dx,
0 dy 0 dg

(A5)
or,
! A )2 A2
Qg = E[PAdA(SA) + Ppdp(8p)°]. (A6)
In the above equation, (1 - ﬁm)) stands for the probability

that two points separated by x can still lie in the same layer,
and the two terms on the right-hand side of the above equa-
tion stand for the two points that lie in the A layers and B
layers, respectively. Similarly, we have aw=%[PAdA(,&,A)2
+Ppdp(fip)?] and a,, =5 (Padaéafin+Ppdpépiis). By substi-
tuting the above expressions of a,,, @,,, and «,, into Eq.
(A3), we have

M

1 i P ) —
El = Z[PAdA(|8A| + |MA|)2 + PBdB(|SB| + |IU“B|)2]8m/u“mw2'

(A7)
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